您现在的位置是:首页 > IT基础架构 > 软件与服务 >
商业智能及其核心技术
摘要商业智能是一个包含信息管理基础架构的平台,通过分析应用为企业的商业策略和绩效管理提供支持,并可以对人员和流程进行一定的管控。...
商业智能是一个包含信息管理基础架构的平台,通过分析应用为企业的商业策略和绩效管理提供支持,并可以对人员和流程进行一定的管控。从系统的角度来看,商业智能的过程起始于不同数据源的数据收集,提取有用的数据进行加工、处理以保证数据的正确性,加工后的数据经过转换、重构存入数据仓库成为实体信息,对这些实体信息进行查询、挖掘、分析和评估等操作,使其成为辅助决策的知识并呈现在最终用户面前,转变为用户决策。可以看出,企业信息化是商业智能应用的基础,商业智能最大程度地利用了企业信息化中各应用系统的数据,将企业日常业务数据整理为信息,逐步升华为知识,从而为决策者提供最大力度的支持。
从企业商业智能系统建立的层面上来看,构建一个完整的商业智能系统涉及到以下几种核心技术:
①数据仓库(DW)。数据仓库是面向主题的、集成的、相对稳定的、连续的数据集合,用以支持经营管理中的决策制定过程,是商业智能的基础。数据仓库能够从容量庞大的业务处理型数据库中抽取数据,处理、转换为新的存储格式;
②联机分析处理(OLAP)。联机分析处理技术使分析人员、管理人员或执行人员从多种角度对从原始数据中转化出来、能够真正为用户所理解的、并真实反映企业维度特性的信息进行快速、一致、交互地存取,从而获得对数据更深入了解的一类软件技术;
③数据挖掘(DM)。数据挖掘即数据库中的知识发现,是一个在数据中提取出有效的、新颖的、有潜在实用价值和易于理解知识模式的高级过程。数据挖掘技术以企业拥有的大量数据为对象,通过抽取、转换、装载等数据处理方法,发现数据的关联与趋势,探寻出其中的业务规律和模式。
其中联机分析处理侧重于与用户的交互、快速的响应速度及提供数据的多维视图,而数据挖掘则注重自动发现隐藏在数据中的模式和有用信息。
(本文不涉密)
责任编辑:
上一篇:商业智能及其核心技术
下一篇:解析:大数据下的CRM